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Chaos and detection
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| report on numerical experiments in which a detector reliably found chaotic signals at signal to noise ratios
as low as— 15 dB. The detector was based on a variant of the hidden Markov models used in speech research.
The task was particularly difficult because the Fourier power spectrum of the noise was constructed to match
the spectrum of the signal. | review likelihood ratio detectors, limitations on the performance of linear models
implied by the broad Fourier power spectra of chaotic signals, and the upper limit thdblinegorov-Sinai
(KS) entropyof a chaotic system places on the expected log likelihood attainable by any model. | find that KS
entropy estimates indicate that even better detection performance is pds3il63-651X96)01705-9

PACS numbdps): 05.45+hb, 84.40.Ua, 02.56:r

[. INTRODUCTION ues. In a detection problem, the detector is given a measured
sequenceJI and asked to choose between two hypotheses.
The multitude of experiments revealing chaotic physical(Of the many references on detection, | have used the work
phenomena that have been reported in the literature of thef Van Treeq1] and of Fukunag§2].) HypothesisH,, is that
past decade and a half suggest that chaos is ubiquitouso target is present, and hypothesls is that a target is
These measurements have firmly established the notion thatesent. The hypotheses correspond to two different stochas-
erratic time series may be explained by low dimensional detic processes that could have generated the measured se-
terministic dynamics. Many investigators are now transferduence. The costs of the four possible outcomes are denoted
ring insight gained from studying chaos to work on practicalCo,0. the cost of choosingi, whenHy is true;Co ;, the cost
tasks such as forecasting, control, and communication. Thigf choosingHo whenH, is true; C, o, the cost of choosing
paper reports on numerical experiments in which | used nonti1 WhenHy is true; C,,, the cost of choosingd, when
linear models to solve a detection problem that linear model§!1 i true. The decision rule that minimizes the expected
could never solve. While much of the chaos and application§°St s s follows: Choosé, if and only if
literature emphasizes the deterministic aspects of chaotic P, (ul)
systems, this paper focuses on probabilistic models and sto- Hi 7t (C10~Coo) P(Ho)
chastic properties of chaotic systems. PHO(UI) (Co1—C1)P(Hy)’
If trajectories of a chaotic system are projected on a
coarse grained or discrete observable, determinism is lost. WhereP(Hy) and P(H,) are the prior probabilities that the
is impossible to determine the value of a future observatiornarget is present or not present, respectively. When measured
on the basis of past observations. The sequences of measudata are used as the arguments of a probability function, the
ments constitute atochastic processesSuppose, for ex- value of the function is called #kelihood Thus the left-
ample, that the functior operating on a continuous state hand side of inequalityl.1) is a ratio of likelihoods and the
space with elements has a chaotic attractor with a stable decision rule is called dikelihood ratio test Using # to
asymptotic probability density. Given a discrete partition ofdenote the right-hand side and taking logs, inequality)
the state space={a,,a,, . ..,ay}, one can map sequences takes the form
of states( . ..,z(—2),z2(—1),2(0),z(1), ...) to sequences
of observations(...,a(—2),a(—1),a(0),a(1),...) by T Py (udui
assigninga(t) the valuea, whenz(t) e a,. In the original Zl '0W > logz. 1.2
state space one hagt+1)=F(z(t)), but in the space of 0

observations one is left with a stochastic process, i.e., a Sét iiq form suggests a recursive evaluation of the log likeli-
probability functions for sequences of all lengths hood ratio function

{Pa:t=1}. [Notation: | use subscripts on probability func- 14 pyilg intuition on the use of the likelihood of models
tions to indicate a function itself rather than the value of afor detection, consider Fig. 1. The figure represents numeri-
function at a point or when it is not clear from the argumentcal data from the double scroll system that is described in
which function I intend. | use a subscript and superscript tcSec. II. Figure 1a) is a histogram of 5000 samples at a signal
denote a sequence, i.e,=(a(1),a(2), ....a(t)).] to noise ratio of 50 dB, and Fig.(l) is a histogram of 5000

In the theory of signal processing and communicationnoise samples. If the ten test valug® depicted in Fig. (c)
signal sources are treated as stochastic processes. Thusai observed and one must guess whether they came from the
filtering, one is interested iR(x|y) the conditional distribu- source characterized by Fig(al or the source characterized
tion of source signalg that could have caused on observedby Fig. 1(b), it seems more plausible to claim that they are
signaly. In forecasting, one is interested R(y(t+ 7]y!)), drawn from the latter process. Figure@)tl(f) depict the
the conditional distribution of future values given past val-case when the signal to noise ratio drops to 5 dB. Two-
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FIG. 1. Histograms for detectioria) A 20 bin histogram of a 5000 point sample of the target signal at 50 dB SB)RA 20 bin
histogram of a 5000 point sample of the background né@élest sequence of ten observatiof§.A 2020 bin histogram of a 5000 point
sample of the target signal at 5 dB SN[) A 20X 20 bin histogram of a 5000 point sample of the background néfis@est sequence of
ten observations.

dimensional histograms provide more discriminating charac- Fitting a complex model to a particular sequeﬁe one

terizations for the more difficult task. As the dimension isoften encounters “overfitting,” i.e.,

increased, the number of cells in a histogram grows expo-

nentially, as does the number of samples required to estimate |OgP9(§D>IongI(YI)><IogP9(XI)>.

the probability of falling in any particular cell. In other

words, the models have too many free parameters. To redudehere are several refinements to maximum likelihood esti-

the number of parameters, one might fit multivariate Gaussmation that address overfitting, but as Sec. Ill D suggests,

ians to the data(ln fact, such models are the basis for mostoverfitting was not a serious problem in the experiments.

common signal processing techniqueklowever, for the A standard class of models assumes that signals are pro-

data considered here, the best Gaussians that can be fit to theced by stable linear systems excited by Gaussian noise.

two source processes aidentical by constructiorand thus  Given the Fourier power spectral densi{®SD of a signal

are of no value for detection. source, one can calculate an upper bound to the expected log
Although a likelihood ratio test is optimal, implementing likelihood that this approach can obtain. The bound is de-

one requires knowledge of the two likelihood functions. scribed in Sec. Ill B. On the other hand, an estimate of Kol-

Likelihood functions are difficult to estimate and it is often mogorov and Sinai’sKS) entropyof a chaotic source pro-

better to estimate the distribution of a simple function of avides a similar bound forany approach. That bound is

measuremerff(utl) called afeature | did not use features in described in Sec. Ill C. For chaotic sources the difference

the experiments described in this paper; the detectors welgetween these two bounds indicates that the performance of

built on direct estimates of likelihood functions for entire signal processing systems that are based on linear models is

measurement sequences. much less than optimal.
Given a sample sequen@ from a stochastic process,
one would like to build a modeP, that could be used to Il. NUMERICAL DATA

evaluate the likelihoodP,(u}) that the same process pro-
duced some other sequence. For the experiments reportedﬂ
this paper, | usednaximum likelihood estimatiome., for a

class of models with free parametefsone selects the pa-

| used the routineoDEINT from Presset al. (see[4], p.
1 to integrate the double scroll system as described in
Chua, Komuro, and Matsumo{&]:

rameters that maximize the likelihood of the sample se- %= a(xp— h(xy)),
quenceP ,(x).

| use the expected log likelihood per sample Xo= X1 — X0+ X3,
1/T (logP4«(x])) as a figure of merit for models. In Sec.
[l Al explain that the entropy of a stochastic process gives X3=— BXy,

an upper bound on this figure of merit and the upper bound is

only attained when a model gives the right probability forwhereh(y)=m,y+ 3(mg—m,)[|y+1|—|y—1/], and | used
each possible sequence. Log likelihood per sample can ke parameters «=9.0, B8=100/7, my=-1/7, and
interpreted as bits per sample. Given a maég| an arith- m;=2/7. Figure 2 characterizes the system. For the ex-
metic code can represent a sequence in less thaamples in this paper, | generated a sequence bki@alues
log,P,(x])+2 bits. Rissaner{3], who invented arithmetic sampled atr,=0.3. | multiplied each sample by 5000 and
coding, has used this observation to cast estimation as aecorded 16 bit integers to simulate digitized measurements
aspect of coding. and enable meaningful comparisons to the bounds described
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FIG. 2. Strangdor chaoti¢ attractor.(a) Phase portrait of the double scroll systefin). Scalar time series of the observalaig). (c)
Fourier power spectrum of the observalid). Autocorrelation function.

in Secs. Il B and 1l C. In the remainder of this paper | will 200
refer to subsequences of these data as b(201) = E b(201—k)aypox+ 0200€(201),
k=1

ci=(c(1),c(2), ... .c(T)),

changing the name of the measured variable and rescaling to

a unit sampling interval for simplicity. 200
| designed the background noise process to make linear b(T)= 2 b(T—K)az00x+ 02006(T)
models useless for distinguishing the signal from the noise. | k=1

used the Levinson-Durbin algorithrfsee[6] for a simple

description to fit a sequence of autoregressi&dR) models  \here the noise terms are independently identically distrib-
[Eqg. (2.2) is an AR mode] to the data z_ind then used the ted (IID) with e(t)~.#(0,1). Using 200 different models
models to generate the background noise. A smaller modeh avoid start up transients in the generated noise samples is
Order W0u|d haVe been SUﬁ|C|ent to ensure that the d|fferencalso Overki"_ | Cou|d have S|mp|y discarded the start up tran-
between the Fourier spectra of the signal source and thgents. But the equations that describe how to generate the
noise source would be insignificant, but the calculations arggise also describe how to evaluate the likelihood of a mea-
fast, so | used a model order of 200. With the notation  syred signal. Thus they are important for building a detector

N that can work on short measurement sequences.

b(t)= kgl b(t—K)ay +one(t), e(t)~.710,1)
2.0

I1l. BOUNDS ON LIKELIHOOD

Chaotic time series are useful test cases for nonlinear sig-
for the AR model of ordeN, the procedure | used to gen- nal processing techniques because one can estimate bounds

erate sequences of lengtht+ 1 can be written as on the likelihood that thdestmodels could achieve. Thus
one can compare the performance of a proposed technique
b(0)=0ye(0), against an absolute reference. The performance bound is
given by the KS entropy. A similar bound on the perfor-
b(1)=b(0)a; 1+ o1€(1), mance of linear models that can be calculated from the Fou-
rier power spectrum is also due to Kolmogorov. | will refer
b(2)=b(1)a,,+b(0)a, ,+ ce(2), to these bounds as th&S boundand thelinear bound The

KS bound is defined in terms ofliscrete sourcesi.e.,
sources of sequences that take values from a discrete set at
each time step. On the other hand, the linear bound is con-
cerned with continuous sources. It describes how well a lin-
ear system driven b§f{ID) Gaussian noise can approximate a
source.

200
b(200)= >, (200~ K)asgok+ o200¢(200),
k=1
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A. Entropy and likelihood tion function as the target. If its probability density is

Given a source of discretely valued sequences with probSmMooth, the differential entropy of a continuodtd) vari-

abilities that are actually given by, consider models of 2bl€ IS
the source that approximate the probabilities of sequences

with parametrized function®,. An essential characteriza- h(X)Ef —p(x)logp(x)dx.
tion of the performance of a model is the expected value of
the log of the conditional likelihood This is a weaker characterization of a random variable or

process than the simple discrete entropy because, for a given
probability density, the differential entropy can be forced to
have any specified value by changing the coordinate system,
(the subscript on the angular brackets indicates that the e9- Ify=ax, then
pected value is with respect to the true probabjility _ n

The Gibbs inequalityCover and Thomassee[7], p. 76 h(Y)=h(X)+loga.

call it the information inequality says If x is quantized with bins of size&\ to yield the discrete

variablez®, then
(logP(c]))p <(l0gP(C]))p_

lim (logP 4(c(T)|c] ™ H)p,

T—oo

h(X)= lim[H(Z*)+logA]

and A—0

_ _ and the limit is approached agx) becomes constant over
<|09P9(C(T)|CI 1)>Pcs(loch(c(T)|cI 1)>Pc entire bins. Thepalumericaquéa)ta were constructed with
A=1.0 and the data were multiplied by 5000 so that prob-
with equality only whenP,(c{)=P.(c]) almost every- ability densities from a linear process fit to the chaotic data
where. Theentropy rateis defined by would be almost constant over entire bins. Thus, in the cho-
sen coordinates, the entropy of the discretized linear process
closely approximates the differential entropy of the continu-

1 . _
- H((()E lim T<|OgPC(CI)>PC: lim <|OgPC(C(T)|CI l))PC' OUS process.

T—o T

(These limits exist if the stochastic process is stationary and B. Linear models

has a finite alphabgtThus The canonical models for time series are linear systems
driven by (IID) Gaussian noise, i.e., the convolution
lim (logPy(c(T)[c] 1))p,<—H(?).
T—o ¢ U:h® €,

In other words,the average performance of any model is *

bounded by the entropy rate. u(t)= > h(net—7).
The McMillan theorem[sometimes called the Shannon- =

McMillan-Breiman theoren{see any text on ergodic theory

or information theory, e.g[7], p. 474, o8], p. 131], which

is the linchpin of information theory, says that for an ergodic

process

One needs thénpulse response functidm for applications
such as filtering, in which one wishes to extract an unob-
served driving signak from an observed output. But for
many applicationgincluding detectioh the only thing that

LT matters is the set of probability density functions for se-
LT =y 1y quences of all possible lengths. Each of these densities is a
fim Tgl logPe(c(D)]ey )=—H(7) @D multivariate Gaussian and is entirely specified by a covari-
ance matrixC, i.e., foru=uj

T—x

in probability. By analogy, | conjecture that in probability

1 t.e-1
T P(U)= e(fllz)u -C u
1 T
lim =2 logP 4(c(t)] ¢ )= lim (logP(c(T)|e1 )e,. V(2m)'[C|
—® =1 — 0 . . -
! t ! 3.2 If the process is stationary and has mean zero, the covariance

matrix is determined by the autocovariance functitin

If one had a subroutine to evaluate a function C C SN
C,i=R(i—j)=R(j—1)=(u(i)u .

Po(u(t)|ui™ 1) for which Eg. (3.2 held, then for any W =RA=D=RO=D=(uhu())

5, 0<6<1, and anye>0, a single string of sufficient Note that C=h-h', but the covarianceC does not

length would lprovide. ~an  estimate  of uniquely specify the impulse responise
lim,_..(logPy(c(t)|ci H))p, within e with probability The covariance matrixC has the Toeplitz form. If the
1-6. autocovariancér(t) decays to zero quickly enough, the co-

The linear bound is given in terms of tltéfferential en-  variance matrix will becomasymptotically equivaleri®] to
tropy of a continuoussource that has the same autocorrela-a circulant matrix as the length of the sequencee{ con-
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sidered goes to infinity. The discrete Fourier transform di-relatesh,, to the Lyapunov exponents, which in turn can
agonalizes circulant matrices. Hence, for lafigeoperations  be numerically estimated accurately and easije numeri-
involving C, C™1, or |C|, e.g., the evaluation dP(uj) or  cal procedures are easy for low-dimensional systems such as
the entropW(UD, can be well approximated quickly using the double scroll, but there are technical questions about the
fast Fourier transforms. A — the principal axes of existence of certain limits and the fidelity of numerical simu-

P(u]) approach Fourier basis functions with eigenvaluedations of chaotic systems, which I have ignojethe Pesin
given by the Fourier power spectrum. Thus, for lafe identity and the notion of natural measure are reviewed by

Shannon’s formula for the differential entropy of a multivari- Eckmann and Ruelle ifil0]. .
ate Gaussian in terms of the eigenvaluesf the covariance I have estimated the KS entropy for the numerical source

matrix C to be hM=0.0951 nats= 0.137 bits per sample interval. In
other words, using an optimal nonlinear model one could
o Tlog(2me)+log|C| T log(2me)+ = log\y losslessly compress the source down from 16 bits per sample
h(U;)= 5 = 5 to an average of 0.137 bits per samfaefactor of 117.
can be approximated usingw), the Fourier PSD. In the D. Hidden Markov models

limit T—o one obtains Kolmogrov’'s expression for differ-
ential entropy rate and mean square prediction error based
infinite history (see[7], p. 274

Linear models are not adequate to detect a target signal
Qc{bainst background noise with a similar spectrum. For the
examples in this paper, | have used what Pdritz] calls
1 1 (+m hidQen filter hidden Markov_ model$iFHMMSs). They are
h(%)=§I0927re+ 4—f logS(w)dw. (3.3 vanan}s of the standard hidden Markov moqeleMMs)

- used in speech research. Although a comparison to the KS

i i i bound indicates that HFHMM performance is not even close
This number characterizes the best performance possible Ugs iqeal for noise free data, they seem to degrade gracefully

ing linear models. For the numerical data set, it is 7.74 nat§g signal complexity increases, and it is easy to combine a
= 11.16 bits, where the unit nat indicates bader the logs  4EHMM and an AR model that describe signal and noise,

Qnd bit indicates base.2. The intgrpretation is .that using ?espectively, to create a model for the sum of signal and
linear model, the 16 bit samples in the numerical data sef,ige.

could be losslessly compressed to 11.16 bits per sample. A HFHMM is concerned with two kinds of random vari-

ables at discrete times, an unobserved discrete stgtend
C. KS entropy and Lyapunov exponents a continuous observablgt). The assumptions afg) given
For several decades, ergodic theorists worked to detethe current state, the next state is conditionally independent
mine if a change of coordinates could transform the functiorPf Previous states and outputs
f(x)=2x mod 1 into the functiorg(x) =3x mod 1. In a se- toty i
quence of papers in 1958 and 1959 Kolmogorov and Sinai P(s(t+1)lsy,up)=P(s(t+1)[s(t));
used a carefully defined entropy rate that is coordinate inde-, | .
pendent and has different values for the two systems to provél) 9iven the current state aridl previous outputs, the cur-
that no such isomorphism exists. Th&iS entropyis rent output is conditionally independent of previous states
and outputs
h,(¢)=sup, im HA(T)|A] ). - .
T—ee P(u(t)]sy,u; )=P(u(t)|s(t),u;_p);

Here ¢ is a dynamical systeny is a measuréprobability)

g . . " 2 (iii ) the output model is linear autoregressive with Gaussian
that is invariant undet), and« is a partition. The partition

. . X residuals
reduces trajectories in the underlying space to symbol se-
qguences. . . ,a(t—1),a(t),a(t+1), ... by recording which N
element of the partition is occupied at each time. The condi- t—1y_ _ [u(t)—u]
: o P(u(t)|s(t),u;_p) ex 557 ,
tional entropy for a partitiony is \/277037(0 Tt
HA(T)|AI H=-2 P(al)logP(a(T)|al b. whereu depends on the stagt) andD previous outputs
T
ay

0=Ugp+asp Ui p -

The ideas are summarized in Sinai's lecture n¢&s

| assume that there is a uniqonatural measureu for the  Thys the model parametes are the discrete conditional
double scroll system and that it is approximated by longransition probabilitiesPy 1)) and the parameters of the
trajectories such as the data | have generated. It is difficult tQutput distribution associated with each statei.e., ug,
apply the definition of KS entropy directly, but the Pesin . and the vector of autoregressive coefficiemtsGiven a
identity training sequence;, one adjusts the model parameters to

maximize the likelihoodP ,(uJ).

)= Nk (3.9 The computer programs that | used for the present paper

A(A>0) are minor modifications of the programs used by Fraser and
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the following relations betweeperplexity 7, variance o,
andentropy hfor a Gaussian are helpful:

)

h=logo+ 3log(2me)~logo+ 1.419,

t
1

K
>
[a W)
k= =g
- —— Traning Data ’
= —— Test Data
*—= KS Bound s pu
===- Linear Bound o= 7 - 7
2me 4.133°
-8
0 100 200 300 . o
Sequence Length t Each model or probability function in Table | could be

used for a compression scheme. The last column of the table
FIG. 3. Average log likelihood. A curve for the training data reports the average number of bits per sample that such a
used to fit the 30 state model with fifth-order AR outputs and curvesscheme would use. The 4.28 nat separation between the lin-
for four randomly selected realizations of the noise free signakar bound and the log likelihood per step of the HFHMM is
c3% are plotted. a key component for building a detector. Aspects of detec-
tion that are not captured in the table are the variation of the
Dimitriadis [12] for work on time series forecasting. Readerslog likelihood over different data sequences and the manner
interested in more than this cursory description of the methin which the log likelihood gap between the target signal and
ods should refer t¢12]. the linear bound shrinks as the signal to noise ratio is de-
| was not careful to avoid overfitting the training data, butcreased. | touch on these issues in the next section.
Fig. 3 suggests overfitting was not a problem. If the model
had too many free parameters, the curve for the training data
would separate dramatically from the others, indicating se-

vere overfitting. o _ Reiterating the introduction, optimal detectors implement
Figure 4 illustrates the decay with time of the importancejikelinood ratio tests. Given a test sequenceTobbserva-

of past observations for forecasts of subsequent observationg, s UI a detector must guess whetm{r is simply back-

It is noteworthy that memory needs to be longer when ther%round noiseb or a mixture of the target signal and the

is more noise. The intuition for this general effect is thatbackground noise+b. The ratio of the likelihoods or its
there is less information in each measurement, so more meg- '

. b g, i.e., logP, ,(Ul)/Py(ul) , summarizes all of the informa-
surements are necessary to specify the “state of the SYS®Myion about the measured signal that is relevant for making the

decision. An optimal detector will decide that the target sig-
nal is present if IogDC+b(uI)/Pb(uI)>log77 where the thresh-
Table | contains the KS bound, linear bound, and the acold 7 is chosen on the basis of the costs of making errors and
tual log likelihood performance of a HFHMM. It also reports the a priori probability that the target is present.
the perplexityand root mean square errarthat would cor- In practice, true likelihood functions are not available. For
respond to the given log likelihood for a Gaussian distribu-the numerical experiments, | used HFHMMNg to approxi-
tion. In the literature of different fields the likelihood of matePHb(uI). Consequently, the performance of my detec-
models are reported in a variety of ways. For comparisongors was determined by the distribution of

IV. DETECTION

E. Likelihood summary

(a) Noise Free
FIG. 4. Incremental log likelihood Each plot rep-

resents calculations on 5000 different realizations of
ui®. As labeled, the curves indicate 16%, 50%, and

(b) Noise Free
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84% points on the cumulative distribution. Histo-
grams ofi (29)=logP,(u(30)|u??) are plotted to the
left. (@) and(b) Noise free signal. The plots describe
the performance of a 30 state model with fifth-order
AR outputs. The linear bound and KS bound are
derived from Eqs(3.3 and (3.4), respectively.(c)
and (d) Noisy signal at a SNR of 10 dB. The plots
describe the performance of a model that was de-
rived from the model in(@ and (b) by using tenth-
order AR outputs with parameters appropriate for a
SNR of 10 dB. | know of no bound for noisy data
that corresponds to the KS bound of the noise free
case.



4520 ANDREW M. FRASER 53

TABLE I. Expected log likelihood per sample interval. The HFHMM was a 30 state model with fifth-
order AR outputs.

Model Perplexity o —(log[P,(y(t)|ys D7)

uniform 65536 15858 11.09 nats 16 bits

best linear 2294 555.0 7.74 nats 11.16 bits

HFHMM 31.94 7.73 3.46 nats 5.00 hits

best nonlinear 1.100 0.266 0.0951 nats 0.137 bits

: P o(UI) If the noise and target processes are stationary and have
q(uy)=lo Poul)’ (4.)  “short” memories, theng’ will inherit these properties and
plUs

the central limit theorem says that the distributiongoWvill

In order for a detector to work reliably, noise signafsmust ~become Gaussian as the sequence lengths increase. | have
produce much smaller values gfthan signals consisting of used this Gaussian approximation for all of the plots in this
the target mixed with noisgl . In other words, for typical ~Section except Fig. (@).

realizationsb] and

y1=(Ja)b]+(V1-a)c], V. CONCLUSION

one wantsy(bl)<q(y1). Note that the signal to noise ratio ~ Probabilistic time series models can be used for a number

(SNR) here is 10 logf(1—a)/a]dB. A comparison of the Of applications including forecasting, detection, classifica-
distributionqu(bD and Pau? determines how well a detec- f[lon,_and compression. The n_umerlcal experiments _descnbed
tor will work. Figure 5 plots the dependence of these twoll this paper illustrate dgtectlon. For most a_pphcatlons, the
distributions on the signal to noise ratio. The intuition thatperformance of a model is closely related to its expected log

the signal should become undetectable as the SNR decreadiéglihood per time step, i.e., lim...(logP,(y(T)|y1 1)>Py-
is confirmed by the manner in which the distributions be-If one uses only canonical linear Gaussian models, the best
come similar as the SNR decreases. The figure represents thug likelihood that can be obtained is described in terms of
performance on signals 500 samples long, the noise mod#he Fourier power spectral density by Kolmogorov’s expres-
P, was a tenth-order AR model, and the signal plus noisesion[Eq. (3.3)]. On the other hand, if the signal source is a
modelP, was a HFHMM with 30 states and tenth-order AR chaotic system, the log likelihood of even the best model is
outputs. bound by the KS entrop}Eg. (3.4)]. The HFHMMs in the
Consider the choice of the threshold valuedotf targets  numerical experiments yielded log likelihoods that fall mid-
are escaping detection, one can always lower the thresholtlay between these boungsee Fig. 3. Thus they are both
(at the expense of increasing the false alarm probapility substantially better than canonical linear Gaussian models
This trade-off is captured in the receiver operating characterand substantially worse than optimal. The availability of
istic (ROC), which is a plot of the probability of detection known performance bounds make chaotic time series useful
(PD), given that there is a target present against the probabitest cases for assessing modeling techniques.
ity of a false alarm(PF), given that there is no target present.
For a perfect detector, some value of the threshold would
yield PD equal to 100% and PF equal to 0. On the other
hand, PD equal to PF is the characteristic of a worthless
detector. The 50%-50% point on the worthless ROC can berLr)
implemented by a tossing a fair coin: if the coin comes up
heads(tails) declare the target presefdeclare no target
respectively. Other points on the worthless ROC can be ©

1

implemented with biased coins. Perfect, worthless, and reals ,3;,,‘,;;‘:‘
istic ROCs appear in Fig. 6. ;';:‘:":':“":‘:“:':“,% -10
Figure 7 depicts the decay of the ROCs as the signal to ¢ St

noise ratio decreases.
In many cases the distribution gfwill be alImost Gauss- LLR
ian. Define the statistic
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X
X
N
X

!

X
R
X

X

SNR

o PyuMluih

q’(up)=lo =1

Pb(u(T)|u1 ) FIG. 5. Distribution of the log likelihood ratio
P(logP«(u3*) /Py (u3®) vs the SNR. Plots of two families of prob-
ability densities are superimposed: The lower right branch depicts

T the distribution when3®is from the background noise source and

Q(UI) - 2 q'(utl). the upper left branch depicts the distribution Whﬁ?ﬂo is from the

i=1

target signal added to noise.

and note
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1 ' I ness, and neither are deterministic. Thus HFHMMS may be
1= rr———————————————=o== - useful whenever nonlinearity or local instability is an impor-

tant signal characteristic.
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pothetical and the SNR equal to15 dB characteristic represents APPENDIX A: RELATIVE ENTROPY IN TERMS OF PSD

the performance of a HFHMM with 30 states and tenth-order out- . . o ,
puts applied to sample sequencg’ with 250 points. In this appendix, | sketph a derivation of Kolm.ogorovs
relation between the Fourier power spectral density and en-

Although the KS entropy provides a bound on the averagd/©PY- In parallel, | obtain the relative entropy rate, which is
log likelihood for a model of the noiseless target, i.e., something like a Qstance be.tween Processes. The kgy |dea_|s
that as one considers covariance matrices in ever higher di-
1 mensions, the spectrum of eigenvalues approaches the PSD.
h << — ZlogP (CT)> | begin with the definition of therelative entropyof two
y7 T o\~1) [ - . .
probability density functiong andq,

0.5 -

PD

detection performance depends on the mead the vari- p

anceof the log likelihoodratio for both the noise and the D(D||Q)E<|Oga> =—(logg),—H(p).

sum of the target and the noise. Thus more is required than p

the KS entropy to calculate theoretical bounds on detection ) i
performance. | would like to see a theory that gave bound$ 3SSUme tha[:r) andq are chagactgnzed by covariance ma-
on the detection of chaotic signals in additive noise and chart/ice8 Cp={(Xx"), and Cq=(xx")q with

acterized the distribution of likelihood of the best possible

models. _ 1 —xtc w2
One might claim that the techniques described in this pa- q(x)= (ZW)T|Cq| e S

per are of limited relevance because the numerical experi-
ments concerned chaotic signals. Beyond citing the man
papers describing chaotic signals in nature, the claim can
refuted by examining the signal characteristics that escape
linear Gaussian model but can be exploited by a HFHMM.
Since a global linear model must be stable to be bounded,

. : -T 1
canonical models are generally forced to be stable. Chaotic  (|ogq) :<_|0927.,_ Zlog|Cq| -
systems are nonlinear, locally unstable, deterministic, and P 2 2 d
bounded. Of these features HFHMMs can reflect local insta-
bility and nonlinearity, canonical models reflect bounded-Asymptotically, the discrete Fourier transform simulta-

neously diagonalize@;1 andC,, so asymptotically

Vvherexzx{, and thatC, andC, are well enough behaved
at they are asymptotically equivalent to their circulant ap-
[?roximations[9]. Now

X*C; Ix >
5 .
p

(a) Simulation (b} Gaussian Approx. 2 7Tk

PD T S T
1 o X (X'Cy™)p= > — 5+

i Tmmi TR a P 2wk

®10 "Im)‘,*;)&‘\\ 1 1 and
SNFl .20 0 PE 0.5
T

. . 2wk

FIG. 7. ROC vs SNRa) reports results of numerical detection |Og|Cq| = E IogSq —,
experiments on 500 sequencm%JO at each SNR(b) is a plot of k=0 T

theoretical ROCs based on estimates of the mean and variance of
a(u3*)=logPy(uz*)/Py(u3®) . whereS(w) is the Fourier spectrum. Hence
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2k Xak=Yo(t—K)VK, 1<k=N. Similarly, suppose that the
T 1T 2k T output model for the second process is
(loga),=—-log2m— 52 Iogsq( |t o y(t)=ajxz+ oge(t). Further, suppose that the two pro-
k=0 Sq(i) cesses are summed using weightsnd 3, i.e.,
T
-T T (2« Sy(@) y()=ay, (1) +Bygt).
~—log2m— —J' logS,(w) + dw,
2 47 Jo S Sy(w) Values fora and o in the equation

from which the expressions for differential entropy rate and

, y(t)=a'x+ oe(t)
relative entropy rates follow:

are required to complete the model for the sum of the pro-

1 : . .
h(.2)= lim — T<|ogp>p cessesa is determined by minimizing
T—o
1 1 1 o X2:<[(axa+ﬁXB)Ta_(aya+ﬂyﬂ)]2> (Bla)
=zlog27+ s+ -—| logS do,
2097 3T 4 0 GSplw)de =(a'(ax,+ Bxg)(ax,+ Bxz)Ta—al(ax,+ Bxz)(ay,
lim [D(prllar) = D(pr-1llar-1)] +BYp) ~ (@Yot BYp) ' (ax,+ Bxp)'a
T—o
+(ayat+BYyp)(ayat BYp)). (B1b)
1 (27S,(w) Sp(w)
“an), Sq(w)—l—bgsq(w)dw Because thea« and B processes are independent,

<XaX,BT> = <Xa><_XBT>' ) <_yaxl3> = <ya><?(ﬁ>’ and <y,BXa>
=(yp){X,). Differentiating Eq.(B1) yields

_|_
2 4’770

S
+log )

1 i 217{5‘)(([,) do
Sy(w) So(w)

2
> (a2<xaxz> + a,B(Xa><X;;> + a,8<X5><XL>

+ ,82(X,3X2,>)a— a2<xaya> - aﬁ<xa><yﬁ>
APPENDIX B: THE SUM OF AN AR PROCESS
AND A HFHMM —aB(Xg)(Ya)— BXXpYp)- (B2)

For the numerical detection experiments, | needed modelgaximum likelihood estimates are obtained by solving Eq.
for the target signal added to the background noise at variou®o) for gy2/da=0 to determine the value af and setting

signal to noise ratios. Deriving such a model is a special €asg2— 2 a5 determined by substitutiryinto Eq. (B1). The
of fitting a HFHMM to the sum of two independent Sources, nocessary first- and second-order moments should be esti-
each of which is described by its own HFHMM. If the first 5164 and saved as part of the process of training the models
source hasvl, states{s, 1,42, - - - Se,m,} @nd the second  f the component processes.
source hadl ; states{sg,1,552, - - - Sgm ), then the model For the detection experiments in this paper, the second
of the sum will haveM =M M states and the transition process had only one state and the output was a zero mean
probabilities for the product states will be given by multiply- linear AR process that modeled the background noise. Hence
ing the transition probabilities of the component states.  (Xg)=0,(yz =0,

The output model for a product state depends on second-
order moments that cannot be derived from the output mod-
els of the component states. Suppose that for a particular  x?=(a(a?xx},+ Bzxﬁx;)a
product state the output model for the first process is t 2 ) 5 2 22

¥ —2a'(@™XY ot BXgYp) + ayot B7Yp),

Yo =8001 2 8aiXak(D)+ae(t)=alx,+aet), and
k=1

where N is the order of the output modek(t) is (IID) 2

X _ 2 t 2 T\va 2 o2
Gaussian with zero mean and unit variancg,=1 and 2 Ja (@(XaXe) + BXgXg)) A~ a™(XeY a) = BAXsY )
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