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I report on numerical experiments in which a detector reliably found chaotic signals at signal to noise ratios
as low as215 dB. The detector was based on a variant of the hidden Markov models used in speech research.
The task was particularly difficult because the Fourier power spectrum of the noise was constructed to match
the spectrum of the signal. I review likelihood ratio detectors, limitations on the performance of linear models
implied by the broad Fourier power spectra of chaotic signals, and the upper limit that theKolmogorov-Sinai
(KS) entropyof a chaotic system places on the expected log likelihood attainable by any model. I find that KS
entropy estimates indicate that even better detection performance is possible.@S1063-651X~96!01705-9#

PACS number~s!: 05.45.1b, 84.40.Ua, 02.50.2r

I. INTRODUCTION

The multitude of experiments revealing chaotic physical
phenomena that have been reported in the literature of the
past decade and a half suggest that chaos is ubiquitous.
These measurements have firmly established the notion that
erratic time series may be explained by low dimensional de-
terministic dynamics. Many investigators are now transfer-
ring insight gained from studying chaos to work on practical
tasks such as forecasting, control, and communication. This
paper reports on numerical experiments in which I used non-
linear models to solve a detection problem that linear models
could never solve. While much of the chaos and applications
literature emphasizes the deterministic aspects of chaotic
systems, this paper focuses on probabilistic models and sto-
chastic properties of chaotic systems.

If trajectories of a chaotic system are projected on a
coarse grained or discrete observable, determinism is lost. It
is impossible to determine the value of a future observation
on the basis of past observations. The sequences of measure-
ments constitute astochastic processes.Suppose, for ex-
ample, that the functionF operating on a continuous state
space with elementsz has a chaotic attractor with a stable
asymptotic probability density. Given a discrete partition of
the state spacea5$a1 ,a2 , . . . ,aN%, one can map sequences
of states„ . . . ,z(22),z(21),z(0),z(1), . . .… to sequences
of observations„ . . . ,a(22),a(21),a(0),a(1), . . .… by
assigninga(t) the valueak when z(t)Pak . In the original
state space one hasz(t11)5F„z(t)…, but in the space of
observations one is left with a stochastic process, i.e., a set of
probability functions for sequences of all lengths
$Pa

1
t :t>1%. @Notation: I use subscripts on probability func-

tions to indicate a function itself rather than the value of a
function at a point or when it is not clear from the argument
which function I intend. I use a subscript and superscript to
denote a sequence, i.e.,a1

t [„a(1),a(2), . . . ,a(t)….#
In the theory of signal processing and communication,

signal sources are treated as stochastic processes. Thus in
filtering, one is interested inP(xuy) the conditional distribu-
tion of source signalsx that could have caused on observed
signaly. In forecasting, one is interested inP„y(t1tuy1

t )…,
the conditional distribution of future values given past val-

ues. In a detection problem, the detector is given a measured
sequenceu1

T and asked to choose between two hypotheses.
~Of the many references on detection, I have used the work
of Van Trees@1# and of Fukunaga@2#.! HypothesisH0 is that
no target is present, and hypothesisH1 is that a target is
present. The hypotheses correspond to two different stochas-
tic processes that could have generated the measured se-
quence. The costs of the four possible outcomes are denoted
C0,0, the cost of choosingH0 whenH0 is true;C0,1, the cost
of choosingH0 whenH1 is true;C1,0, the cost of choosing
H1 whenH0 is true;C1,1, the cost of choosingH1 when
H1 is true. The decision rule that minimizes the expected
cost is as follows: ChooseH1 if and only if

PH1
~u1

T!

PH0
~u1

T!
.

~C102C00!P~H0!

~C012C11!P~H1!
, ~1.1!

whereP(H0) andP(H1) are the prior probabilities that the
target is present or not present, respectively. When measured
data are used as the arguments of a probability function, the
value of the function is called alikelihood. Thus the left-
hand side of inequality~1.1! is a ratio of likelihoods and the
decision rule is called alikelihood ratio test. Using h to
denote the right-hand side and taking logs, inequality~1.1!
takes the form

(
t51

T

log
PH1

~utuu1
t21!

PH0
~utuu1

t21!
. logh. ~1.2!

This form suggests a recursive evaluation of the log likeli-
hood ratio function.

To build intuition on the use of the likelihood of models
for detection, consider Fig. 1. The figure represents numeri-
cal data from the double scroll system that is described in
Sec. II. Figure 1~a! is a histogram of 5000 samples at a signal
to noise ratio of 50 dB, and Fig. 1~b! is a histogram of 5000
noise samples. If the ten test valuesu1

10 depicted in Fig. 1~c!
are observed and one must guess whether they came from the
source characterized by Fig. 1~a! or the source characterized
by Fig. 1~b!, it seems more plausible to claim that they are
drawn from the latter process. Figures 1~d!-1~f! depict the
case when the signal to noise ratio drops to 5 dB. Two-
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dimensional histograms provide more discriminating charac-
terizations for the more difficult task. As the dimension is
increased, the number of cells in a histogram grows expo-
nentially, as does the number of samples required to estimate
the probability of falling in any particular cell. In other
words, the models have too many free parameters. To reduce
the number of parameters, one might fit multivariate Gauss-
ians to the data.~In fact, such models are the basis for most
common signal processing techniques.! However, for the
data considered here, the best Gaussians that can be fit to the
two source processes areidentical by constructionand thus
are of no value for detection.

Although a likelihood ratio test is optimal, implementing
one requires knowledge of the two likelihood functions.
Likelihood functions are difficult to estimate and it is often
better to estimate the distribution of a simple function of a
measurementF(u1

t ) called afeature. I did not use features in
the experiments described in this paper; the detectors were
built on direct estimates of likelihood functions for entire
measurement sequences.

Given a sample sequencex̄1
T from a stochastic process,

one would like to build a modelPu that could be used to
evaluate the likelihoodPu(u1

t ) that the same process pro-
duced some other sequence. For the experiments reported in
this paper, I usedmaximum likelihood estimation, i.e., for a
class of models with free parametersu one selects the pa-
rameters that maximize the likelihood of the sample se-
quencePu( x̄1

T).
I use the expected log likelihood per sample

1/T ^ logPu(x1
T)& as a figure of merit for models. In Sec.

III A I explain that the entropy of a stochastic process gives
an upper bound on this figure of merit and the upper bound is
only attained when a model gives the right probability for
each possible sequence. Log likelihood per sample can be
interpreted as bits per sample. Given a modelPu , an arith-
metic code can represent a sequence in less than
log2Pu(x1

T)12 bits. Rissanen@3#, who invented arithmetic
coding, has used this observation to cast estimation as an
aspect of coding.

Fitting a complex model to a particular sequencex̄1
T , one

often encounters ‘‘overfitting,’’ i.e.,

logPu~ x̄1
T!. logPX

1
T~ x̄1

T!.^ logPu~x1
T!&.

There are several refinements to maximum likelihood esti-
mation that address overfitting, but as Sec. III D suggests,
overfitting was not a serious problem in the experiments.

A standard class of models assumes that signals are pro-
duced by stable linear systems excited by Gaussian noise.
Given the Fourier power spectral density~PSD! of a signal
source, one can calculate an upper bound to the expected log
likelihood that this approach can obtain. The bound is de-
scribed in Sec. III B. On the other hand, an estimate of Kol-
mogorov and Sinai’s~KS! entropyof a chaotic source pro-
vides a similar bound forany approach. That bound is
described in Sec. III C. For chaotic sources the difference
between these two bounds indicates that the performance of
signal processing systems that are based on linear models is
much less than optimal.

II. NUMERICAL DATA

I used the routineODEINT from Presset al. ~see@4#, p.
721! to integrate the double scroll system as described in
Chua, Komuro, and Matsumoto@5#:

ẋ15a„x22h~x1!…,

ẋ25x12x21x3 ,

ẋ352bx2 ,

whereh(y)5m1y1 1
2(m02m1)@ uy11u2uy21u#, and I used

the parameters a59.0, b5100/7, m0521/7, and
m152/7. Figure 2 characterizes the system. For the ex-
amples in this paper, I generated a sequence of 106 x1 values
sampled atts50.3. I multiplied each sample by 5000 and
recorded 16 bit integers to simulate digitized measurements
and enable meaningful comparisons to the bounds described

FIG. 1. Histograms for detection.~a! A 20 bin histogram of a 5000 point sample of the target signal at 50 dB SNR.~b! A 20 bin
histogram of a 5000 point sample of the background noise.~c! Test sequence of ten observations.~d! A 20320 bin histogram of a 5000 point
sample of the target signal at 5 dB SNR.~e! A 20320 bin histogram of a 5000 point sample of the background noise.~f! Test sequence of
ten observations.
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in Secs. III B and III C. In the remainder of this paper I will
refer to subsequences of these data as

c1
T[„c~1!,c~2!, . . . ,c~T!…,

changing the name of the measured variable and rescaling to
a unit sampling interval for simplicity.

I designed the background noise process to make linear
models useless for distinguishing the signal from the noise. I
used the Levinson-Durbin algorithm~see @6# for a simple
description! to fit a sequence of autoregressive~AR! models
@Eq. ~2.1! is an AR model# to the data and then used the
models to generate the background noise. A smaller model
order would have been sufficient to ensure that the difference
between the Fourier spectra of the signal source and the
noise source would be insignificant, but the calculations are
fast, so I used a model order of 200. With the notation

b~ t !5 (
k51

N

b~ t2k!aN,k1sNe~ t !, e~ t !;N ~0,1!

~2.1!

for the AR model of orderN, the procedure I used to gen-
erate sequences of lengthT11 can be written as

b~0!5s0e~0!,

b~1!5b~0!a1,11s1e~1!,

b~2!5b~1!a2,11b~0!a2,21s2e~2!,

A

b~200!5 (
k51

200

b~2002k!a200,k1s200e~200!,

b~201!5 (
k51

200

b~2012k!a200,k1s200e~201!,

A

b~T!5 (
k51

200

b~T2k!a200,k1s200e~T!,

where the noise terms are independently identically distrib-
uted ~IID ! with e(t);N (0,1). Using 200 different models
to avoid start up transients in the generated noise samples is
also overkill. I could have simply discarded the start up tran-
sients. But the equations that describe how to generate the
noise also describe how to evaluate the likelihood of a mea-
sured signal. Thus they are important for building a detector
that can work on short measurement sequences.

III. BOUNDS ON LIKELIHOOD

Chaotic time series are useful test cases for nonlinear sig-
nal processing techniques because one can estimate bounds
on the likelihood that thebestmodels could achieve. Thus
one can compare the performance of a proposed technique
against an absolute reference. The performance bound is
given by the KS entropy. A similar bound on the perfor-
mance of linear models that can be calculated from the Fou-
rier power spectrum is also due to Kolmogorov. I will refer
to these bounds as theKS boundand thelinear bound. The
KS bound is defined in terms ofdiscrete sources, i.e.,
sources of sequences that take values from a discrete set at
each time step. On the other hand, the linear bound is con-
cerned with continuous sources. It describes how well a lin-
ear system driven by~IID ! Gaussian noise can approximate a
source.

FIG. 2. Strange~or chaotic! attractor.~a! Phase portrait of the double scroll system.~b! Scalar time series of the observablec(t). ~c!
Fourier power spectrum of the observable.~d! Autocorrelation function.
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A. Entropy and likelihood

Given a source of discretely valued sequences with prob-
abilities that are actually given byPc , consider models of
the source that approximate the probabilities of sequences
with parametrized functionsPu . An essential characteriza-
tion of the performance of a model is the expected value of
the log of the conditional likelihood

lim
T→`

^ logPu„c~T!uc1
T21

…&Pc

~the subscript on the angular brackets indicates that the ex-
pected value is with respect to the true probability!.

The Gibbs inequality@Cover and Thomas~see@7#, p. 76!
call it the information inequality# says

^ logPu~c1
T!&Pc<^ logPc~c1

T!&Pc

and

^ logPu„c~T!uc1
T21

…&Pc<^ logPc„c~T!uc1
T21

…&Pc

with equality only whenPu(c1
T)5Pc(c1

T) almost every-
where. Theentropy rateis defined by

2H~C ![ lim
T→`

1

T
^ logPc~c1

T!&Pc5 lim
T→`

^ logPc„c~T!uc1
T21

…&Pc.

~These limits exist if the stochastic process is stationary and
has a finite alphabet.! Thus

lim
T→`

^ logPu„c~T!uc1
T21

…&Pc<2H~C !.

In other words,the average performance of any model is
bounded by the entropy rate.

The McMillan theorem@sometimes called the Shannon-
McMillan-Breiman theorem~see any text on ergodic theory
or information theory, e.g.,@7#, p. 474, or@8#, p. 131!#, which
is the linchpin of information theory, says that for an ergodic
process

lim
T→`

1

T(t51

T

logPc„c~ t !uc1
t21

…52H~C ! ~3.1!

in probability. By analogy, I conjecture that in probability

lim
T→`

1

T(t51

T

logPu„c~ t !uc1
t21

…5 lim
T→`

^ logPu„c~T!uc1
T21

…&Pc.

~3.2!

If one had a subroutine to evaluate a function
Pu„u(t)uu1

t21
… for which Eq. ~3.2! held, then for any

d, 0,d,1, and anye.0, a single string of sufficient
length would provide an estimate of
limt→`^ logPu„c(t)uc1

t21
…&Pc within e with probability

12d.
The linear bound is given in terms of thedifferential en-

tropy of a continuoussource that has the same autocorrela-

tion function as the target. If its probability density is
smooth, the differential entropy of a continuous~IID ! vari-
able is

h~X![E 2p~x!logp~x!dx.

This is a weaker characterization of a random variable or
process than the simple discrete entropy because, for a given
probability density, the differential entropy can be forced to
have any specified value by changing the coordinate system,
e.g., if y5ax, then

h~Y!5h~X!1 loga.

If x is quantized with bins of sizeD to yield the discrete
variablezD, then

h~X!5 lim
D→0

@H~ZD!1 logD#

and the limit is approached asp(x) becomes constant over
entire bins. The numerical data were constructed with
D51.0 and the data were multiplied by 5000 so that prob-
ability densities from a linear process fit to the chaotic data
would be almost constant over entire bins. Thus, in the cho-
sen coordinates, the entropy of the discretized linear process
closely approximates the differential entropy of the continu-
ous process.

B. Linear models

The canonical models for time series are linear systems
driven by ~IID ! Gaussian noise, i.e., the convolution

u5h^ e,

u~ t !5 (
t52`

`

h~t!e~ t2t!.

One needs theimpulse response functionh for applications
such as filtering, in which one wishes to extract an unob-
served driving signale from an observed outputu. But for
many applications~including detection!, the only thing that
matters is the set of probability density functions for se-
quences of all possible lengths. Each of these densities is a
multivariate Gaussian and is entirely specified by a covari-
ance matrixC, i.e., foru[u1

T

P~u!5
1

A~2p!TuCu
e~21/2!u†•C21

•u.

If the process is stationary and has mean zero, the covariance
matrix is determined by the autocovariance functionR:

Ci , j5R~ i2 j !5R~ j2 i !5^u~ i !u~ j !&.

Note that C5h•h†, but the covarianceC does not
uniquely specify the impulse responseh.

The covariance matrixC has the Toeplitz form. If the
autocovarianceR(t) decays to zero quickly enough, the co-
variance matrix will becomeasymptotically equivalent@9# to
a circulant matrix as the lengthT of the sequencesu1

T con-
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sidered goes to infinity. The discrete Fourier transform di-
agonalizes circulant matrices. Hence, for largeT, operations
involving C, C21, or uCu, e.g., the evaluation ofP(u1

T) or
the entropyH(U1

T), can be well approximated quickly using
fast Fourier transforms. AsT→` the principal axes of
P(u1

T) approach Fourier basis functions with eigenvalues
given by the Fourier power spectrum. Thus, for largeT,
Shannon’s formula for the differential entropy of a multivari-
ate Gaussian in terms of the eigenvaluesl of the covariance
matrix C

h~U1
T!5

T log~2pe!1 loguCu
2

5
T log~2pe!1(kloglk

2

can be approximated usingS(v), the Fourier PSD. In the
limit T→` one obtains Kolmogrov’s expression for differ-
ential entropy rate and mean square prediction error based on
infinite history ~see@7#, p. 274!

h~U!5
1

2
log2pe1

1

4pE2p

1p

logS~v!dv. ~3.3!

This number characterizes the best performance possible us-
ing linear models. For the numerical data set, it is 7.74 nats
5 11.16 bits, where the unit nat indicates basee for the logs
and bit indicates base 2. The interpretation is that using a
linear model, the 16 bit samples in the numerical data set
could be losslessly compressed to 11.16 bits per sample.

C. KS entropy and Lyapunov exponents

For several decades, ergodic theorists worked to deter-
mine if a change of coordinates could transform the function
f (x)52x mod 1 into the functiong(x)53x mod 1. In a se-
quence of papers in 1958 and 1959 Kolmogorov and Sinai
used a carefully defined entropy rate that is coordinate inde-
pendent and has different values for the two systems to prove
that no such isomorphism exists. TheirKS entropyis

hm~f![supa lim
T→`

H„A~T!uA1
T21

….

Heref is a dynamical system,m is a measure~probability!
that is invariant underf, anda is a partition. The partition
reduces trajectories in the underlying space to symbol se-
quences. . . ,a(t21),a(t),a(t11), . . . by recording which
element of the partition is occupied at each time. The condi-
tional entropy for a partitiona is

H„A~T!uA1
T21

…52(
a1
T
P~a1

T!logP„a~T!ua1
T21

….

The ideas are summarized in Sinai’s lecture notes@8#.
I assume that there is a uniquenatural measurem for the

double scroll system and that it is approximated by long
trajectories such as the data I have generated. It is difficult to
apply the definition of KS entropy directly, but the Pesin
identity

hm~f!5 (
lk~lk.0!

lk ~3.4!

relateshm to the Lyapunov exponentsl, which in turn can
be numerically estimated accurately and easily.~The numeri-
cal procedures are easy for low-dimensional systems such as
the double scroll, but there are technical questions about the
existence of certain limits and the fidelity of numerical simu-
lations of chaotic systems, which I have ignored.! The Pesin
identity and the notion of natural measure are reviewed by
Eckmann and Ruelle in@10#.

I have estimated the KS entropy for the numerical source
to be hm50.0951 nats50.137 bits per sample interval. In
other words, using an optimal nonlinear model one could
losslessly compress the source down from 16 bits per sample
to an average of 0.137 bits per sample~a factor of 117!.

D. Hidden Markov models

Linear models are not adequate to detect a target signal
against background noise with a similar spectrum. For the
examples in this paper, I have used what Poritz@11# calls
hidden filter hidden Markov models~HFHMMs!. They are
variants of the standard hidden Markov models~HMMs!
used in speech research. Although a comparison to the KS
bound indicates that HFHMM performance is not even close
to ideal for noise free data, they seem to degrade gracefully
as signal complexity increases, and it is easy to combine a
HFHMM and an AR model that describe signal and noise,
respectively, to create a model for the sum of signal and
noise.

A HFHMM is concerned with two kinds of random vari-
ables at discrete times, an unobserved discrete states(t) and
a continuous observableu(t). The assumptions are~i! given
the current state, the next state is conditionally independent
of previous states and outputs

P„s~ t11!us1
t ,u1

t
…5P„s~ t11!us~ t !…;

~ii ! given the current state andD previous outputs, the cur-
rent output is conditionally independent of previous states
and outputs

P„u~ t !us1
t ,u1

t21
…5P„u~ t !us~ t !,ut2D

t21
…;

~iii ! the output model is linear autoregressive with Gaussian
residuals

P„u~ t !us~ t !,ut2D
t21

…5
1

A2pss~ t !
2

expS 2
@u~ t !2û#2

2ss~ t !
2 D ,

whereû depends on the states(t) andD previous outputs

û5ūs~ t !1as~ t !•ut2D
t21 .

Thus the model parametersu are the discrete conditional
transition probabilitiesPs(t11)us(t) and the parameters of the
output distribution associated with each states, i.e., ūs ,
ss , and the vector of autoregressive coefficientsas . Given a
training sequenceu1

T , one adjusts the model parameters to
maximize the likelihoodPu(u1

T).
The computer programs that I used for the present paper

are minor modifications of the programs used by Fraser and
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Dimitriadis @12# for work on time series forecasting. Readers
interested in more than this cursory description of the meth-
ods should refer to@12#.

I was not careful to avoid overfitting the training data, but
Fig. 3 suggests overfitting was not a problem. If the model
had too many free parameters, the curve for the training data
would separate dramatically from the others, indicating se-
vere overfitting.

Figure 4 illustrates the decay with time of the importance
of past observations for forecasts of subsequent observations.
It is noteworthy that memory needs to be longer when there
is more noise. The intuition for this general effect is that
there is less information in each measurement, so more mea-
surements are necessary to specify the ‘‘state of the system.’’

E. Likelihood summary

Table I contains the KS bound, linear bound, and the ac-
tual log likelihood performance of a HFHMM. It also reports
theperplexityand root mean square errors that would cor-
respond to the given log likelihood for a Gaussian distribu-
tion. In the literature of different fields the likelihood of
models are reported in a variety of ways. For comparisons,

the following relations betweenperplexityP , variances2,
andentropy hfor a Gaussian are helpful:

h5 logs1 1
2 log~2pe!' logs11.419,

P5eh,

s5
P

A2pe
'

P

4.133
.

Each model or probability function in Table I could be
used for a compression scheme. The last column of the table
reports the average number of bits per sample that such a
scheme would use. The 4.28 nat separation between the lin-
ear bound and the log likelihood per step of the HFHMM is
a key component for building a detector. Aspects of detec-
tion that are not captured in the table are the variation of the
log likelihood over different data sequences and the manner
in which the log likelihood gap between the target signal and
the linear bound shrinks as the signal to noise ratio is de-
creased. I touch on these issues in the next section.

IV. DETECTION

Reiterating the introduction, optimal detectors implement
likelihood ratio tests. Given a test sequence ofT observa-
tions u1

T , a detector must guess whetheru1
T is simply back-

ground noiseb or a mixture of the target signal and the
background noisec1b. The ratio of the likelihoods or its
log, i.e., logPc1b(u1

T)/Pb(u1
T) , summarizes all of the informa-

tion about the measured signal that is relevant for making the
decision. An optimal detector will decide that the target sig-
nal is present if logPc1b(u1

T)/Pb(u1
T).logh where the thresh-

old h is chosen on the basis of the costs of making errors and
thea priori probability that the target is present.

In practice, true likelihood functions are not available. For
the numerical experiments, I used HFHMMsPu to approxi-
matePc1b(u1

T). Consequently, the performance of my detec-
tors was determined by the distribution of

FIG. 3. Average log likelihood. A curve for the training data
used to fit the 30 state model with fifth-order AR outputs and curves
for four randomly selected realizations of the noise free signal
c1
300 are plotted.

FIG. 4. Incremental log likelihood Each plot rep-
resents calculations on 5000 different realizations of
u1
30. As labeled, the curves indicate 16%, 50%, and
84% points on the cumulative distribution. Histo-
grams ofi (29)[ logPu„u(30)uu1

29
… are plotted to the

left. ~a! and~b! Noise free signal. The plots describe
the performance of a 30 state model with fifth-order
AR outputs. The linear bound and KS bound are
derived from Eqs.~3.3! and ~3.4!, respectively.~c!
and ~d! Noisy signal at a SNR of 10 dB. The plots
describe the performance of a model that was de-
rived from the model in~a! and ~b! by using tenth-
order AR outputs with parameters appropriate for a
SNR of 10 dB. I know of no bound for noisy data
that corresponds to the KS bound of the noise free
case.
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q~u1
T![ log

Pu~u1
T!

Pb~u1
T!
. ~4.1!

In order for a detector to work reliably, noise signalsb1
T must

produce much smaller values ofq than signals consisting of
the target mixed with noisey1

T . In other words, for typical
realizationsb1

T and

y1
T5~Aa!b1

T1~A12a!c1
T ,

one wantsq(b1
T)!q(y1

T). Note that the signal to noise ratio
~SNR! here is 10 log10@~12a!/a#dB. A comparison of the
distributionsPq(b

1
T) andPq(y

1
T) determines how well a detec-

tor will work. Figure 5 plots the dependence of these two
distributions on the signal to noise ratio. The intuition that
the signal should become undetectable as the SNR decreases
is confirmed by the manner in which the distributions be-
come similar as the SNR decreases. The figure represents the
performance on signals 500 samples long, the noise model
Pb was a tenth-order AR model, and the signal plus noise
modelPu was a HFHMM with 30 states and tenth-order AR
outputs.

Consider the choice of the threshold value logh. If targets
are escaping detection, one can always lower the threshold
~at the expense of increasing the false alarm probability!.
This trade-off is captured in the receiver operating character-
istic ~ROC!, which is a plot of the probability of detection
~PD!, given that there is a target present against the probabil-
ity of a false alarm~PF!, given that there is no target present.
For a perfect detector, some value of the threshold would
yield PD equal to 100% and PF equal to 0. On the other
hand, PD equal to PF is the characteristic of a worthless
detector. The 50%-50% point on the worthless ROC can be
implemented by a tossing a fair coin: if the coin comes up
heads~tails! declare the target present~declare no target!,
respectively. Other points on the worthless ROC can be
implemented with biased coins. Perfect, worthless, and real-
istic ROCs appear in Fig. 6.

Figure 7 depicts the decay of the ROCs as the signal to
noise ratio decreases.

In many cases the distribution ofq will be almost Gauss-
ian. Define the statistic

q8~u1
T![ log

Pu„u~T!uu1
T21

…

Pb„u~T!uu1
T21

…

and note

q~u1
T!5(

t51

T

q8~u1
t !.

If the noise and target processes are stationary and have
‘‘short’’ memories, thenq8 will inherit these properties and
the central limit theorem says that the distribution ofq will
become Gaussian as the sequence lengths increase. I have
used this Gaussian approximation for all of the plots in this
section except Fig. 7~a!.

V. CONCLUSION

Probabilistic time series models can be used for a number
of applications including forecasting, detection, classifica-
tion, and compression. The numerical experiments described
in this paper illustrate detection. For most applications, the
performance of a model is closely related to its expected log
likelihood per time step, i.e., limT→`^ logPu„y(T)uy1

T21
…&Py.

If one uses only canonical linear Gaussian models, the best
log likelihood that can be obtained is described in terms of
the Fourier power spectral density by Kolmogorov’s expres-
sion @Eq. ~3.3!#. On the other hand, if the signal source is a
chaotic system, the log likelihood of even the best model is
bound by the KS entropy@Eq. ~3.4!#. The HFHMMs in the
numerical experiments yielded log likelihoods that fall mid-
way between these bounds~see Fig. 3!. Thus they are both
substantially better than canonical linear Gaussian models
and substantially worse than optimal. The availability of
known performance bounds make chaotic time series useful
test cases for assessing modeling techniques.

FIG. 5. Distribution of the log likelihood ratio
P(logPu(u1

500)/Pb(u1
500)) vs the SNR. Plots of two families of prob-

ability densities are superimposed: The lower right branch depicts
the distribution whenu1

500 is from the background noise source and
the upper left branch depicts the distribution whenu1

500 is from the
target signal added to noise.

TABLE I. Expected log likelihood per sample interval. The HFHMM was a 30 state model with fifth-
order AR outputs.

Model Perplexity s 2^ log@Pu„y(t)uy1
t21

…#&

uniform 65536 15858 11.09 nats 16 bits
best linear 2294 555.0 7.74 nats 11.16 bits
HFHMM 31.94 7.73 3.46 nats 5.00 bits
best nonlinear 1.100 0.266 0.0951 nats 0.137 bits
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Although the KS entropy provides a bound on the average
log likelihood for a model of the noiseless target, i.e.,

hm< K 2
1

T
logPu~c1

T!L ,
detection performance depends on the meanand the vari-
anceof the log likelihoodratio for both the noise and the
sum of the target and the noise. Thus more is required than
the KS entropy to calculate theoretical bounds on detection
performance. I would like to see a theory that gave bounds
on the detection of chaotic signals in additive noise and char-
acterized the distribution of likelihood of the best possible
models.

One might claim that the techniques described in this pa-
per are of limited relevance because the numerical experi-
ments concerned chaotic signals. Beyond citing the many
papers describing chaotic signals in nature, the claim can be
refuted by examining the signal characteristics that escape a
linear Gaussian model but can be exploited by a HFHMM.
Since a global linear model must be stable to be bounded,
canonical models are generally forced to be stable. Chaotic
systems are nonlinear, locally unstable, deterministic, and
bounded. Of these features HFHMMs can reflect local insta-
bility and nonlinearity, canonical models reflect bounded-

ness, and neither are deterministic. Thus HFHMMS may be
useful whenever nonlinearity or local instability is an impor-
tant signal characteristic.
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APPENDIX A: RELATIVE ENTROPY IN TERMS OF PSD

In this appendix, I sketch a derivation of Kolmogorov’s
relation between the Fourier power spectral density and en-
tropy. In parallel, I obtain the relative entropy rate, which is
something like a distance between processes. The key idea is
that as one considers covariance matrices in ever higher di-
mensions, the spectrum of eigenvalues approaches the PSD.
I begin with the definition of therelative entropyof two
probability density functionsp andq,

D~puuq![ K logpq L
p

52^ logq&p2H~p!.

I assume thatp andq are characterized by covariance ma-
tricesCp5^xx†&p andCq5^xx†&q with

q~x!5
1

A~2p!TuCqu
e2x†Cq

21x/2,

wherex[x1
T , and thatCp andCq are well enough behaved

that they are asymptotically equivalent to their circulant ap-
proximations@9#. Now

^ logq&p5K 2T

2
log2p2

1

2
loguCqu2

x†Cq
21x

2 L
p

.

Asymptotically, the discrete Fourier transform simulta-
neously diagonalizesCq

21 andCp , so asymptotically

^x†Cq
21x&p5 (

k50

T SpS 2pk

T D
SqS 2pk

T D
and

loguCqu5 (
k50

T

logSqS 2pk

T D ,
whereS(v) is the Fourier spectrum. Hence

FIG. 6. Three receiver operating characteristics~ROCs!: The
‘‘perfect’’ characteristic and the ‘‘worthless’’ characteristic are hy-
pothetical and the SNR equal to215 dB characteristic represents
the performance of a HFHMM with 30 states and tenth-order out-
puts applied to sample sequencesu1

250 with 250 points.

FIG. 7. ROC vs SNR~a! reports results of numerical detection
experiments on 500 sequencesu1

500 at each SNR.~b! is a plot of
theoretical ROCs based on estimates of the mean and variance of
q(u1

500)[ logPu(u1
500)/Pb(u1

500) .
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^ logq&p5
2T

2
log2p2

1

2(k50

T F logSqS 2pk

T D1

SpS 2pk

T D
SqS 2pk

T D G
'

2T

2
log2p2

T

4pE0
2p

logSq~v!1
Sp~v!

Sq~v!
dv,

from which the expressions for differential entropy rate and
relative entropy rates follow:

h~X ![ lim
T→`

2
1

T
^ logp&p

5
1

2
log2p1

1

2
1

1

4pE0
2p

logSp~v!dv,

lim
T→`

@D~pTuuqT!2D~pT21uuqT21!#

5
1

4pE0
2pSp~v!

Sq~v!
212 log

Sp~v!

Sq~v!
dv

52
1

2
1

1

4pE0
2pFSp~v!

Sq~v!
1 log

Sq~v!

Sp~v!Gdv.

APPENDIX B: THE SUM OF AN AR PROCESS
AND A HFHMM

For the numerical detection experiments, I needed models
for the target signal added to the background noise at various
signal to noise ratios. Deriving such a model is a special case
of fitting a HFHMM to the sum of two independent sources,
each of which is described by its own HFHMM. If the first
source hasMa states$sa,1 ,sa,2 , . . . ,sa,Ma

% and the second

source hasMb states$sb,1 ,sb,2 , . . . ,sb,Mb
%, then the model

of the sum will haveM5MaMb states and the transition
probabilities for the product states will be given by multiply-
ing the transition probabilities of the component states.

The output model for a product state depends on second-
order moments that cannot be derived from the output mod-
els of the component states. Suppose that for a particular
product state the output model for the first process is

ya~ t !5aa,01 (
k51

N

aa,kxa,k~ t !1sae~ t !5aa
†xa1sae~ t !,

where N is the order of the output model,e(t) is ~IID !
Gaussian with zero mean and unit variancexa,051 and

xa,k5ya(t2k);k, 1<k<N. Similarly, suppose that the
output model for the second process is
yb(t)5ab

†xb1sbe(t). Further, suppose that the two pro-
cesses are summed using weightsa andb, i.e.,

y~ t !5aya~ t !1byb~ t !.

Values fora ands in the equation

y~ t !5a†x1se~ t !

are required to complete the model for the sum of the pro-
cesses.a is determined by minimizing

x25^@~axa1bxb!†a2~aya1byb!#2& ~B1a!

5^a†~axa1bxb!~axa1bxb!†a2a†~axa1bxb!~aya

1byb!2~aya1byb!†~axa1bxb!†a

1~aya1byb!†~aya1byb!&. ~B1b!

Because the a and b processes are independent,
^xaxb

†&5^xa&^xb
†&, ^yaxb&5^ya&^xb&, and ^ybxa&

5^yb&^xa&. Differentiating Eq.~B1! yields

1

2

]x2

]a
5~a2^xaxa

†&1ab^xa&^xb
†&1ab^xb&^xa

†&

1b2^xbxb
†&!a2a2^xaya&2ab^xa&^yb&

2ab^xb&^ya&2b2^xbyb&. ~B2!

Maximum likelihood estimates are obtained by solving Eq.
~B2! for ]x2/]a50 to determine the value ofa and setting
s25x2 as determined by substitutinga into Eq. ~B1!. The
necessary first- and second-order moments should be esti-
mated and saved as part of the process of training the models
of the component processes.

For the detection experiments in this paper, the second
process had only one state and the output was a zero mean
linear AR process that modeled the background noise. Hence
^xb&50, ^yb&50,

x25^a†~a2xaxa
†1b2xbxb

† !a

22a†~a2xaya1b2xbyb!1a2ya
21b2yb

2&,

and

1

2

]x2

]a
5~a2^xaxa

†&1b2^xbxb
†&!a2a2^xaya&2b2^xbyb&.
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